Interprocedural Specialization of Higher-Order Dynamic Languages Without Static Analysis
نویسندگان
چکیده
Function duplication is widely used by JIT compilers to efficiently implement dynamic languages. When the source language supports higher order functions, the called function’s identity is not generally known when compiling a call site, thus limiting the use of function duplication. This paper presents a JIT compilation technique enabling function duplication in the presence of higher order functions. Unlike existing techniques, our approach uses dynamic dispatch at call sites instead of relying on a conservative analysis to discover function identity. We have implemented the technique in a JIT compiler for Scheme. Experiments show that it is efficient at removing type checks, allowing the removal of almost all the run time type checks for several benchmarks. This allows the compiler to generate code up to 50% faster. We show that the technique can be used to duplicate functions using other run time information opening up new applications such as register allocation based duplication and aggressive inlining. 1998 ACM Subject Classification D.3.4 Processors
منابع مشابه
Interprocedural Specialization of Higher-Order Dynamic Languages Without Static Analysis (Artifact)
This artifact is based on LC, a research oriented JIT compiler for Scheme. The compiler is extended to allow interprocedural, type based, code specialization using the technique and its implementation presented in the paper. Because the technique is directly implemented in LC, the package contains the build of the compiler used for our experiments. To support repeatability, the artifact allows ...
متن کاملInterprocedural Type Specialization of JavaScript Programs Without Type Analysis
Previous work proposed lazy basic block versioning, a technique for just-in-time compilation of dynamic languages which we believe represents an interesting point in the design space. Basic block versioning is simple to implement, simple enough that a single developer can build a complete just-in-time compiler for JavaScript in a year, yet it performs surprisingly well as it propagates context-...
متن کاملFor a Better Support of Static Data Flow
This paper identiies and solves a class of problems that arise in binding time analysis and more generally in partial evaluation of programs: the approximation and loss of static information due to dynamic expressions with static subexpressions. Solving this class of problems yields substantial binding time improvements and thus dramatically better results not only in the case of partial evalua...
متن کاملAn approach for the understanding of scientific application programs based on program specialization
This paper reports on an approach for improving the understanding of old programs which have become very complex due to numerous extensions. We have adapted partial evaluation techniques for program understanding. These techniques mainly use propagation through statements and simplifications of statements. We focus here on the automatic interprocedural analysis and we specify both tasks for cal...
متن کاملThe impact of interprocedural class analysis on optimization
The runtime performance of object-oriented languages often suffers due to the overhead of dynamic dispatching. In order to make these languages competitive with traditional languages, optimizing compilers attempt to eliminate as many of the dynamic dispatches as possible. A variety of local and intraprocedural techniques have been developed to do this, but they can be ineffective when they are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017